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Abstract-The transient temperature distribution in a moving bar due to a step input of heat is 
presented for an insulated and an uninsulated system. It is also shown that this solution is valid for a 
slender composite system made up of materials of different properties moving independently when 

the components are of high conductivity and in intimate contact. 

NOMENCLATURE 

A, cross-sectional area [ft2]; 
CP, specific heat [Btu/lb, degF]; 
H, dimensionless parameter defined by 

equation (10) ; 
h, convective film coefficient [Btu/h ft 

degF1; 
k thermal conductivity [Btu/h ft degF] ; 

e, total heat input per unit time [Btu/h]; 
t, time from start of heating [h]; 
W velocity [ft/h]; 
-% distance from heat source in the 

direction of motion [ft]. 

Greek symbols 
a, thermal diffusivity, [fts/h] ; 

i!l; 
mass density [lbm/fts] ; 
temperature [degF]. 

Superscripts, Subscripts and Indices 
refers to an individual component of a 
composite system; 
refers to the total number of com- 
ponents of a composite system; 
designates the solutions applicable to 
the region x > 0; 
designates the solutions applicable to 
the region x < 0; 
indicates a dimensionless variable; 
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3 indicates a modified property of a 
composite system. 

INTRODUCTION 

SOLUTIONS of the problems of linear heat flow 
in a bar subjected to a moving heat source have 
previously been presented for the quasi-station- 
ary state, i.e. a steady state relative to the source 
(cf. v1, PI). 

These solutions are here extended to the 
transient case of a step input of heat and to 
include any number of bars or liquids moving at 
different velocities in parallel lines through a 
plane heat source which is considered stationary 
for the present analysis. See Fig. 1. Any but not 
all of the velocities may be zero. It is assumed 
that the temperature at any cross section is 
uniform across the section and is a function only 
of the distance from the source at any instant. 
This requires that the composite system be of 
relatively small cross section and/or the thermal 
resistances between the various materials be low. 
Thus the assumption of uniform temperature at 
any cross section does not mean neglect of 
transverse conduction. It results from either the 
assumption that heat is conducted so rapidly in 
the transverse direction that no large temperature 
gradients are able to exist or the assumption that 
transverse distances are so small compared with 
those in the direction of motion that large 
temperature differences can not exist in the 
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transverse direction. Radiation effects are 
neglected in the model under consideration. 

This problem arose in the analysis of an instru- 
ment for measuring the mass flow of sap in a 
leaf as originally suggested by Professor A. C. 
Leopold of the Horticulture Department of 
Purdue University. As a first approximation, a 
parallel-veined leaf may be assumed to con- 
sist of a series of parallel tubes through which the 
sap flows and around which are moist non- 
moving living cells. If, now, one positions a 
narrow wire heater across the leaf transverse 
to the direction of flow a temperature field will 
develop that will change as the mass flow varies. 
By detecting these temperature changes through 
properly located thermocouples one can relate 
them to changes in mass flow via the solution of 
the problem considered herein. 

MATHEMATICAL FORMULATION FOR AN 
INSULATED SYSTEM 

which may be rewritten as 

, m ae a0 
a ax2 

- U’ ay =zz at (1) 

where n’ is a thermal diffusivity defined by: 
For a differential element of an insulated body 

of n materials such as that depicted in Fig. 1, 
there are for each material, heat input terms of 
the form 

i (kA)i 
i=l 

(--kA)t ;; Ar + (&AU)iB At, and U’ is a velocity defined by: 

heat output terms of the form 

(--k~)~ ; (0 + ; Ax)& + (pC,AU)i 

and storage terms of the form 

where the notation ( )i is used to indicate that 
the product within the brackets is formed using 
the appropriate quantities of the ith material. 
For liquids, the bulk velocity is to be used for U. 
Applying a heat balance and allowing Ax and At 
to approach zero simultaneously, there results, 

f-l i 1 
n 

i 1 

(2) 

Note that equation (1) is of the same form as 
that obtained for a single bar moving through a 
plane heat source. When a composite material 

PLANE OF HEATING AT X:0 

7 f- 
INSULATED 

FIG. 1. Composite moving system with plane of heating at x = 0. 
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is considered, the thermal diffusivity and velocity 
are modified as shown in equations (2) and (3). 

We now proceed to extend the solution of (1) 
to the case of a step input of heat at t = 0 when 
the initial temperature is everywhere zero. The 
appropriate boundary conditions are 

0=Oor~=Oforx+* co, t-c cc (4) 

and 

= QIY(t) for x = 0 (5) 

where @A)’ is the quantity $ (kA)i and H(t) is 
(=l 

Heaviside’s unit step function. &GO and ho 

designate the temperatures for the regions x < 0 
and x < 0 respectively. Furthermore, the con- 
dition that 0,,0 equals &a0 at x = 0 must be 
satisfied. The boundary condition given by (5) 
includes one necessary condition in t as well as 
one in x and is a statement of the fact that the 
heat introduced at the source is started at t equal 
to zero and is conducted away in both the 
positive and negative x directions. 

On the introduction of the dimensionless 
variables 

tu’2 t* = -;, x* = ?u’ and /jl* = fckA)” 
r 2 

a a Qa’ ’ 

equation (1) and boundary conditions (4) and (5) 
become 

328” ae* ae* 
3x”” ax* at* (19 

with 

8*=Oor~~=Oforx*+*co,t*~ cc (4*) 

and 

ae* x%0 

ax* 
ae* .%*a0 
as* = H(t*) for x* = 0 (5*) 

SOLUTION AND RESULTS FOR INSULATED 

SYSTEM 

The solution of the above system of equations 
was obtained by use of the Laplace transforma- 
tion (cf. [3], [41). The mechanics of the solution 

which were tedious but straight-forward have 
been placed in the appendix. 

For x* -< 0 the result is 

e*51:Zo = 3 ez* erfc 
[ 

and for x* 3 0 

( 
--x” z/t* 

\wt* ---I - 2 

erfc 
i 
ZX+F (6) 

e* 
i i 

x* t/t” __-__ - x*2~ = 4 erfc 2dte 2 1 
ex’ erfc 

C 
$+J$. 

11 
(7) 

If t* -+ co in equations (6) and (7), they become 
the well-known steady state solutions e*Z*Ga 
= ex* and 0*2*>o = 1. The transient solution is 
presented graphically in Fig. 2. 

0.6 - 

0.1 
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x* 

FIG. 2. Temperature distribution about a heat source for 
a moving insulated system. 
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MATHEMATICAL FORMULATION FOR 

A NON-INSULATED SYSTEM 

The method of analysis presented above is also 
applicable to a non-insulated composite system 
if heat loss is proportional to the difference 
between the ambient and system temperature at 
any x location. The constant of proportionality 
is to be a known convective film coefficient, h. 

If it is assumed that the temperature of the 
environment is zero, then the heat loss to it is 
hoAxAt. When this is included in the heat balance 
the result analogous to equation (1) is 

a28 ae ae ,-y ax2  - u’ ax - h’0 = at (8) 

where h’ is defined by: 

(9 

If the initial temperature of the composite system 
is the same as the environment temperature, then 
the appropriate boundary conditions are again 
given by equations (4) and (5). 

Introducing t *, x* and 0* as previously defined 
into equation (8) results in 

a2e* ae* ae* --__ 
ax*2 ax* He* = at* @*I 

8” 

FIG. 3. Temperature distribution about a heat source. for 
a moving non-insulated system for a particular value of 

H. (Qualitative representation only.) 

where His a dimensionless parameter defined by: 

The dimensionless boundary conditions are again 
those given by (4*) and (5*). 

SOLUTION AND RESULTS FOR A 
NON-INSULATED SYSTEM 

The introduction of the parameter H into the 
problem complicates the solution only slightly. 
The Laplace transformation method used is 
again the same as described in the Appendix. For 
x* < 0 the result is 

e;*,, = 1 

22/(1 + 4H) 

exp Ml + ~‘(1 + 4H)lx*] 

( --x* 40 + @W*l ___- - d-c 22/t* 2 

- exp Ml - ~01 + 4Wx*I 

erfc 
-x* d[(l + 4H)t*l _ 

22/t* + -.__~ 
2 )! 

and for x* > 0 

1 
e* 

‘*‘O = 21/(1 + 4H) 

-I exp Ml - d(1 + 4H)lx*) 

erfc 
X* 2/W + 4fOt*l 

__ - 
22/t* ) 2 

- exp {$[l + ~‘(1 + 4H)lx*) 

erfc 

’ (11) 

(12) 

The steady state solutions obtained by allowing 
t*-+ co in (11) and (12) are in agreement with 
those presented in the literature (cf. [l], [2]). 
These are 

e* exp W + ~41 + 4Hllx*> 
a?&0 = 

and 
~‘(1 + 4H) 

e* exp Ml - 2/U + 4H)lx*l 
2'>0 = 

v'U+4H) 
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For a given choice of the parameter H, the 
graphical representation of equations (11) and 
(12) will be as shown in Fig. 3. All of the curves 
in this Figure are only qualitatively correct. 

CONCLUSION 

The result of this analysis is that the problem 
of heat transfer in a composite system of materi- 
als moving at different velocities through a heat 
source can, in some instances, be reduced to an 
analogous situation involving a single bar whose 
properties are functions of the properties of the 
composite system. This is true, however, only if 
it is not inaccurate to assume that the tempera- 
ture at any cross section is uniform and only a 
function of the distance from the source at any 
instant. 

The transient solution contained herein 
should find application in many diversified areas 
including, for example, the problem of heat 
distribution in a gun barrel and discontinuous 
welding and extrusion processes. For starting 
and stopping in these latter processes, the 
temperature distribution in the materials can be 
found from the solutions presented by the 
method of superposition. 
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APPENDIX 

The solution of the following system of 
equations is desired : 

a28* a0* ad* ---_----_- 
ax*2 ax* at* (13) 

with the boundary conditions 

and 
8*z*~0 = 6*z*,50 for x* = 0 (16) 

By employing the Laplace transformation 
method equation (13) becomes 

a2F aF --- 
ax*2 ax* = SF* - 8*(x, + 0) 

where F(x, s) is the Laplace transform of 
0*(x, t). Since 8*(x, t) is initially zero this 
simplifies to 

(17) 

The boundary conditions transform to 

F 
a@ 

=Oor@=Oforx*+& cc (18) 

aFzbGo aF,.,o 
ax*-----= ax* ffor x* =0 (19) 

and 

F 2<0 = F %*a0 for x* = 0 (20) 

The system of equations (17) through (20) can 
now be solved for Fz*so and Fz*>o. The results 
being 

Fz*<O = exp [x*/2] ( exp MU + 4s)*x*l 
s(1 + 4sy 1 

(21) 

Fz*>O = exp [x*/2] ( exp [-&(1-t 4+x*] 
s(l + 4sy 

-- (22) 
1 

Note that to return to the time domain one 
requires the inversion of a form similar to 

exp [--a@ + #I 
s(t, + ,)a 

where a and b are independent of s. This 
inversion does not seem to be presented in any 
of the available tables. However, it can be 
derived from an inversion presented in most 
references ([3] and [4], for example) without 
recourse to any complex integration necessary 
if the inversion theorem were used. Note that 

0* = 0 or $ = 0 for x* +- i co, t* < co (14) L-l 
( 
exp;gy; @l) = ; + 

ae*,8Go ae* Z’>O ___ - --___ = H(t)for x* = 0 ax* ax* (15) 
exp [--a@ + s)P -- 

)1 
. 

s (23) 
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Here L-1 denotes the inversion operation. Now Substituting the result of equation (25) into 
using the property of the Laplace transforma- 
tion that L-l[f(b + s)] = exp [--bt] L-l[,f(.s)] we 

equation (24) and performing the differentiation 
of (23) results in 

can write 

L_1 

( 

EP [--a@ + $1 
s 

= exp [--bt] L-l 

~F~_~q 

The inversion required in equation (24) 
found from a table to be 

L_e?!!j = + exp [bt] 

r 

! 
exp [-az/b] erfc 

[ 
.._a-. _ ,,/(bt) 22/t 1 

+ exp [a@1 erfc 
I! 

. 

(24) 

is now 

1 
21/b 

i 
{exp kadb] erfc (2:, - II( 1 (26) 

? 
- exp [adb] erfc [25i -i- L.(bf)) \. 

I 
/ 

1,’ / 

(25) 
Application of this inversion to equations (21) 
and (23) will result in O*+GO and O*z*>~ as given 
in the text by equations (6) and (7). 

J 

The inversion (26) is also the one necessary 
for the non-insulated system. 

Rt%u&--La distribution de temperature transitoire dans une barre en mouvement due a un apport 
brutal de chaleur est pr&sent6e pour un systeme isole et un systeme non-isole. 

On montre aussi que, cette solution est valable pour un systeme Clano? composite fait de materiaux 
de proprietes se deplacant independamment lorsque les composants sont de conductivite &levee et en 

contact intime. 

Zusammenfassung-Die nichtstationlre Temperaturverteilung in einem bewegten Stab, hervorgerufen 
durch eine schrittweise Wsirmezufuhr, wird in dieser Arbeit ftir ein isoliertes und nichtisoliertes 
System mitgeteilt. Es wird such gezeigt, dass diese Losung gtiltig ist fiir ein diinnes zusammengesetztes 
System, dessen Materialien verschiedene Eigenschaften haben und sich unabhlngig voneinander 
bewegen, sofern die Komponenten eine hohe Warmeleitfahigkeit besitzen und in guten Kontakt zu 

einander stehen. 


